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Equation of State for Nonpolar Fluids: Prediction
from Boiling Point Constants

H. Eslami'
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A new corresponding states correlation for the second virial coefficient of non-
polar fluids in terms of the boiling point constants is presented. The scaling con-
stants are the normal boiling point temperature, Ty,, which is used to form a
dimensionless temperature and the liquid density at the normal boiling point,
Pop»> Which is used to form a dimensionless second virial coefficient. The proce-
dure has been examined for a large number of substances including noble gases,
diatomic molecules, saturated hydrocarbons up to Cg, and a number of
aliphatic, aromatic, and cyclic hydrocarbons. The resulting correlation has been
applied to predict the equation of state of fluids over the range from the vapor-
pressure curve to the freezing curve at various temperatures from the triple
point up to the nonanalytical critical region. The equation of state has been
applied to reproduce the liquid density of a great number of compounds both
in the saturation and compressed states, at temperatures up to 2000 K and
pressures up to 10000 bar, within an accuracy of a few percent. In particular we
have shown that knowledge of two readily measurable constants is sufficient to
determine the pvT surface of pure normal fluids having a variety of structural
complexities.

KEY WORDS: compressed liquids; corresponding states; equation of state;
gases; second virial coefficient.

1. INTRODUCTION

The prediction of bulk properties of matter from molecular level models
appears to be a well-known science. Statistical-mechanical perturbation

theories of

fluids have been developed over the past years [ 1, 2] based on

the recognition that the structure of a liquid is determined primarily by
repulsive forces, so that fluids of hard bodies can serve as useful reference
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systems. An accurate analytical equation of state is presented by Ihm et al.
[3], which is based on the statistical-mechanical perturbation theory of the
liquid state in the perturbation scheme of Weeks—Chandler—Anderson [2].
In the final form, the equation of state is

P (By—a) p
— =14 —" 1
kT~ T 1 r 0227y THO0P) (1)

where p is the pressure, p is the density, k7T is the thermal energy per
molecule, B, is the second virial coefficient, a is a parameter that accounts
for repulsive forces, b is the van der Waals covolume, G(bp) is the pair dis-
tribution function for hard-sphere bodies at contact [4], and 4 is the slope
of [G(bp)]~" as a function of bp. In Eq. (1), the characteristic parameters
B,, o, and b all are temperature-dependent. o(7') and b(T) vary slightly
with temperature and do not depend on the details of the potential func-
tion used for their calculation. B,(7T) depends highly on temperature and
serves as an interaction coefficient of the system in the equation of state.

The values of B,(T), a(T), and b(T) can be calculated from the poten-
tial function by integration. If an accurate potential function is not known,
o and b can be calculated from the experimental second virial coefficient by
means of a two-constant scaling rule [5]. This can be done because « and
b depend on the intermolecular repulsive forces and are relatively insen-
sitive to the details of the intermolecular potential energy function. Thus
the second virial coefficient serves to predict the entire equation of state for
fluids in terms of two scaling constants, over the whole range of tem-
peratures and pressures, excluding the nonanalytical critical point and the
two-phase region.

A new strong principle of corresponding states is contained in Eq. (1),
and this principle has led to an appreciable accuracy and simplicity [6].
The principle is that the plot of [G(bp)]~! vs. bp is a linear function, with
the slope of A, a free parameter that is known to compensate for any uncer-
tainties in the second virial coefficient, i.e.,

1 (o—p3) p _1_
[G(bp)] 1—O(p Z—l-}—m =1—Jbp (2)

where Z = p/pkT is the compressibility factor [3]. Substituting the above
functional form for G(bp) in Eq.(1), Ihm et al. [ 3] obtained

—B
Py _a=B)p (3)
pkT 1+0224bp 1—Abp
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The purpose of this paper is to show how the equation of state can be
used with even less input information. In particular, we have shown that
knowledge of two constants is sufficient to determine the pvT surface of
a pure normal fluid with an accuracy of a few percent. The two scaling
constants are the normal boiling point temperature and liquid density.

2. CORRELATION

The minimum input information needed to use Eq. (3) consists of
experimental values of the second virial coefficient plus some high density
data to fix the value of an adjustable constant, 4, in G(bp). The second
virial coefficient plays a central role in Eq. (3) in that it is used both
directly and indirectly, as a source of scaling constants for the calculation
of a(T) and H(T) [5]. Although accurate direct measurements of B, are
best, in their absence there are several correlation schemes, usually based
on the law of corresponding states, by which B, can be estimated with
reasonable accuracy.

Statistical theory [7] shows that a group of substances will conform
to the principle of corresponding states only if the intermolecular potentials
are identical except for distances and energy-scale parameters characteristic
of each substance. Also quantum effects and multibody effects must be neg-
ligible. Various types of molecular shapes and molecular dipole moments
might be expected to cause different deviations from macroscopic properties
of simple fluids. It is found, however, that the reduced second virial coeffi-
cients for a wide variety of molecular types are nearly identical functions of
reduced parameters. Generally two scaling constants, a temperature constant
and a volume constant, are needed to estimate the second virial coefficient
from the corresponding states correlation. The temperature constant, which
is a measure of the strength of intermolecular forces, is used to form a
dimensionless temperature, and the volume constant is used to form a
dimensionless second virial coefficient.

A simple reduced equation for the second virial coefficient is proposed
by Berthelot [8], which uses the critical temperature, 7, as the tem-
perature reducing constant and the pseudocritical molar volume, RT¢/pc,
as the volume reducing constant. The correlation reproduces the properties
of real gases at low pressures to the ideal gas state. Pitzer and Curl [9]
showed that the introduction of the acentric factor, w, as an additional
parameter increases the accuracy of the correlation, so that plots of
B, pc/RTc versus T/T form a universal family of curves indexed by the
third parameter, w. It should be noted that the critical volume, v, is sub-
ject to higher experimental inaccuracy than that of 7 and p. Therefore,
it is recommended to use the pseudocritical volume, B, p-/RT., instead



1126 Eslami

[10]. The values of these constants are known for many substances [ 11],
but for some liquids 7 and p are not known, either because they have
not been measured or because the liquid decomposes at high temperatures.
Boushehri and Mason [ 12] introduced the latent heat of vaporization and
the liquid density at the triple point or freezing point as two scaling con-
stants for correlating second virial coefficient data. A new correlation is
also proposed by Boushehri and Ghatee [ 13] based on the surface tension
and the liquid density at the freezing point.

In this work, we show that two easily measurable scaling constants,
namely the liquid density at the normal boiling point as the volume constant
and the normal boiling point temperature as the temperature constant, are
sufficient for correlating second virial coefficients of normal fluids, ranging
in complexity from noble gases, w =0, to hydrocarbons up to Cg, @ = 0.398.

We have checked experimental data to see whether a dimensionless
plot of B, py,, as a function of T',,/T results in a universal curve or, at least,
a close family of curves that can be indexed by a third constant. We have
chosen 25 normal fluids having a variety of structural types for testing the
present prediction scheme. The fluids examined can be classified into the
following seven groups for convenience:

Noble gases: Ne, Ar, Kr, Xe

Diatomic molecules: N,, O,, CO

C,-C, alkanes: CH,, C,H4, C;Hg, n-C,H,,, i-C,H,,

Cs—Cg alkanes: n-CsHy,, i-CsH,,, n-C4Hy,, n-C,H4, n-CgH g
Aliphatic hydrocarbons: propene, 1-butene, cis-2-butene, trans-2-
butene

Aromatic hydrocarbons: CcHq, CcHsCH,
Cyclic hydrocarbons: cyclo-CsH,,, cyclo-C¢Hjs,.

Figure 1 shows that a single curve serves to correlate a wide variety of non-
polar fluids with sufficient accuracy (see Section 3). The smoothed values
of the second virial coefficient recommended by Dymond and Smith [ 14]
have been used to construct Fig. 1. In the cases where smoothed values are
not cited, the other sources compiled by Dymond and Smith [14] are
used. Therefore, we have used the second virial coefficients by Michels et
al. [15] for CO, by Strein et al. [ 16] for i-C,H,,, by Al-Bizreh et al. [ 17]
for n-C;H,;¢ and n-CgH,5, by Roper [18] for cis- and trans-C,H,,, by
Kolysko et al. [ 19] for toluene, and by McGlashan et al. [20] for 1-butene
and cyclo-CsH,,. Examination of the results plotted in Fig. 1 shows that
it is not necessary to index the curves by the third parameter @ for our
purpose. Apparently the shape effects described by the acentric factor affect
the values of T}, and py, to compensate for their influence on the second
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Fig 1. Correlation plot for the reduced second virial coefficient of ((J) Ne, Ar,
Kr, Xe; (A) O,, N,, CO; (®B) CH,, C,Hg, C3Hg, n-C4H, i-C4H s (@)
n-CsH,,, i-CsH,,, n-C¢H 4, n-C;H 4, n-C3H 5; (A) propene, 1-butene, cis-2-
butene, trans-2-butene; (®) C,Hy, C4HsCHy; (O) cyclo-CsH g, cyclo-CgH 5.
The markers are experimental data [14-20] and the solid line represents the
best polynomial fit, Eq. (4). The same marker is used for each group listed in
Table II.

virial coefficient. Our resulting correlation for B, can be represented by the
empirical expression

T, T,.\>
B, py,=1.033 —3.0069 <Tp> —10.588 <Tp>

T, \3 T, \*
+ 13.096 <pr> —9.8968 <pr> (4)

which is shown as the solid curve in Fig. 1. A total of 296 points are
included in Fig. 1, and the R-squared value for the fit is 0.9891. Equation
(4) can be used to predict B, over the entire temperature range cited in
Ref. 14. Also shown in Fig. 2 is the standard two-parameter correlation,
B, pc/RT as a function of T/T, for the sake of comparison. It is clear
that the present correlation is more accurate than the correlation based on
the critical constants.
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Fig. 2. Same as Fig. 1 for B, po/RT¢ versus T/Tc.

Because « and b are insensitive to the detailed shape of the inter-
molecular potential, they can be calculated if B, is known, by means of
some effective mean-spherical potential [5, 6]. The results of such calcula-
tions are conveniently recorded [3] as the dimensionless quantities a/Vy
and b/Vyg, which are almost universal functions of the dimensionless tem-
perature 7/Ty. Here the scale factors Tz and V5 are the Boyle temperature
at which B, =0, and the Boyle volume, V= T(dB,/dT )5, which can be
expressed in terms of the boiling point parameters as T, =4.629T),, and
Vg =1.3277/p,,,. The empirical equations given in Ref. 6 for a/Vy and b/V'y
as a function of T/Ty, using an LJ (12-6) potential, can then be rescaled
by T, and p,,,, instead of T and V' as:

S A o) S B B

and

a1 ) o] ()
+a2{1—{1+0.2502 <T;”°>1/4} exp{ —c, <Tpr>l/4}} (6)
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Table I. Comparison of the Calculated Boyle Parameters with the Values Determined from
Tabulated Data in Ref. 14

Ty (K) Vg (cm3.mol 1)
Substance  Cal. Expt. D (%) Cal. Expt. D (%)
Ne 1254 127.1 —-13 22.24 2244 —0.80
Ar 404.1 409.1 —-0.2 37.98 43.60 —12.88
Kr 554.5 579.8 —43 45.98 51.10 —10.02
Xe 764.5 774.5 —-13 58.99 72.30 —18.41
N, 358.1 321.0 11.5 46.11 55.69 —172
0, 417.5 4094 2.0 37.23 41.87 —11.08
CO 378.0 342.0 10.5 47.14 56.21 —16.13
CH, 515.7 508.7 1.4 50.19 54.55 —8.00
where
a; = —00860, ¢, =0.5624
a, =2.3988, ¢, =1.4267

For the sake of comparison, we have calculated the Boyle parameters
for several compounds and compared the results with values determined
from tabulated data in Ref. 14. The results are shown in Table I. It is worth
mentioning that the Boyle volume involves the first derivative of the second
virial coefficient with respect to temperature, and, hence, the errors become
exaggerated. For the other fluids, listed in Table II, the experimental
second virial coefficient data do not extend to high enough temperatures to
allow the calculation of Boyle parameters.

To determine the value of the constant A, at least one experimental
high-density pvT point is needed. For consistency, to find A we have used
normal boiling point pvT data. Once this is done, the parameter 4 can be
calculated using Egs. (3)-(6). The right hand side of Eq. (3) contains
parameters B, p, ap, bp, and A. According to Eqs. (4)—(6), the former three
parameters have the same value at the normal boiling point for different
fluids. The left hand side, Z, is very small compared with unity for the
liquid phase at the normal boiling point, but varies very slightly for dif-
ferent fluids. Therefore, the parameter 4 must have nearly the same value
for all fluids. Calculation of 4 at the normal boiling point leads to the value
of 0.495, close to that obtained for noble gases, 0.454, by IThm et al. [3].
Equation (3) therefore simplifies to the more convenient form

)4 =1_(oc—Bz)p ap
pkT 1+0.116p  1—0.495bp

(7)
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Table II. Calculated Results for the Density of Nonpolar Fluids Compared with Experiment
as Average Absolute Deviation (AAD) and Maximum Deviation (MD) Percentage

Top Pop AT Ap* AAD MD
Substance (K)  (mol-L71) (K) (bar) (%) (%) NP’ Ref.
Ne 27.09 59.690 25-300  0-200 2.6 4.2 135 22
Ar 87.29 34953 83.8-1300 0-5000 1.5 55 105 23
Kr 119.78 28.875 116-1300 0-1000 2.3 5.8 98 22
Xe 165.15 22.504 161.5-1300 0-1000 2.8 59 102 22
N, 77.35 28.794 63-2000 0-10000 2.8 9.3 104 24
0, 90.19 35.663 54.5-300  0-800 24 79 121 25
CO 81.65 28.167 71-1800 0-800 2.83 6.3 114 22
CH, 111.42 26.456 91-800 0-1000 1.9 7.9 84 22
C,Hg 184.52 18.174 90400 0-500 0.7 5.6 60 22
C;Hy 231.10 13.199 190-500 0-600 0.8 5.7 68 22
n-C4Hy, 272.65 10.341 213-510 0-600 1.3 2.7 78 22
i-C4H,o 261.42 10.224 203-393 0-200 1.2 2.5 67 22
n-CsHy, 309.22 8.456 183-423 0-200 1.0 6.2 59 22
i-CsHy, 301.00 8.477 173413 0-15.5 1.2 4.6 25 22
n-CgHyy 341.89 7.118 193483 0-300 23 9.0 56 22
n-C;H ¢ 371.78 6.127 183-573  0-1500 3.6 9.2 42 22
n-CgHg 398.81 5.353 273-570  0-500 3.8 5.6 44 22
Propene 225.45 14.464 123-250 0-215 0.9 24 41 22
1-Butene 266.89 10.764 173444 0-680 1.7 3.8 54 22
cis—2-Butene 276.87 11.422 223-283 0-1.3 0.1 0.5 7 22
trans—2-Butene 274.03 11.157 223-283 0-1.4 0.1 0.4 7 22
CegHg 353.25 10.529 278.5-600  0-500 1.7 4.7 69 22
CsHsCH; 383.77 8.457 173-343 0-0.3 0.4 24 18 22

Cyclo-CsH 32241 10219 223-373 041 02 0.5 16 22
Cyclo-C¢H 5 353.89 8.544 283-353  0-1 02 0.6 L)

“The lower pressure limit is the vapor pressure at the lower temperature reported.
® The number of points considered.

which is the major result of this work. Since there are not parameters such
as the acentric factor [9], the latent heat of vaporization [ 12], or the sur-
face tension [ 13] in the correlation of Egs. (4)—(6), the reduced quantities
B, pops %Py, and bpy,, are all independent of substance. This is the reason
that the parameter A has the same value for all substances. Theoretically,
A is a fluid-dependent property [ 21], but in the current empirical treatment,
it is sufficient to regard it as a constant. The scaling constants, T, and py,,
may change in such a way to compensate for the shape effects in 4. The
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present method for determining 4, 0.495, reproduces pvT results which are
almost within +5% of experimental values [22-25].

3. RESULTS

We can now check for the strong principle of corresponding states,
Eq. (2), obtained by Ihm et al. [3]. According to this principle, for all the
pvT data of fluids, except the nonanalytical critical region, the graph of
[G(bp)]~" versus bp should cover a straight line given by 1 —Jbp, or, in
our method, 1 —0.495bp. The parameter bp in Eq. (2) can be written as a
product of dimensionless quantities, bp,, and p/p,,,, and similarly for B, p
and ap. Such a graph is shown in Fig. 3 for a number of substances listed
in Table II. The points in Fig. 3 fall along a single line of slope —1 shown
by the solid line. The small scatter is not surprising, since the underlying
theory is based on the perturbation treatment of the statistical mechanics
for fluids of hard convex bodies [ 3]. The experimental density region that
is covered in Fig. 3 ranges along the vapor-pressure curve at various tem-
peratures from the triple point up to the critical region.

Equation (7) has been used to calculate the density of substances listed
in Table II both in the saturation and compressed states. The results are

0.7
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Fig. 3. Correlation plot of [G(bp)] ™" vs. 0.495bp for (®) Xe, (x)
O,, (0) C,He, (@) n-C4Hy, (%), i-CsHy,, (A) n-CgHyg, (W) CgHg,
(<) cyclo-C4H,, (O) cis-2-butene, (A) trans-2-butene. The markers
are from tabulated pvT values [ 22-25] and the solid line is 1 — 0.495bp.
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Fig. 6. Same as Fig. 4 for () n-C¢H 4, (O) n-C;Hg, (O) n-CgHyg, (A) i-CgHysg,
($) n-CoHy, (@) n-C1Hy,, and (W) n-CisHy.
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Fig. 7. Same as Fig. 4 for (@) C4Hg, () cyclo-C4Hy,, (O) cis-
C,Hg, (O) trans-C,Hg.
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Fig. 8. Deviation plot for the density of compressed Ar as a function of tem-
perature at (4) 10 bar, (A) 100 bar, (O) 250 bar, (H) 500 bar, (CJ) 1000 bar,

and (A) 5000 bar.
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Fig. 10. Deviation plot for the density of n-CqH,, at (—) 343.15 K and (A)
483.15 K, n-C,H,¢ at (A) 303.15 K and (#) 573.15 K, n-CyH,5 at () 300 K and
(O)570 K, i-CgH,g at ( x ) 373.15 K and (O) 553.15 K, n-C,,H,, at (<) 313.15 K
and (+) 393.15 K, and C,H, at (W) 273.15 K and (@) 423.15 K.

compared with the tabulated values [22-25], as the average absolute
deviation and the maximum deviation, in a wide range of temperatures and
pressures in Table II. The tabulated vapor-pressure data [22-25] have
been used to calculate the liquid densities in the saturation state, and the
Maxwell equal-area construction has not been applied. Although Table II
is itself a measure of the accuracy of the present method, we have shown
deviation plots for the density of compounds listed in Table II and also for
C,H, and a number of long-chain paraffins including #-CyH,, n-C,,H,,,
and n-C,cH,,, which are more complex, in Figs. 4-10. It is clear that for
almost all cases the deviations are not higher than +5%. The predicted
densities at low temperatures get worse as the chain length gets longer.

4. CONCLUSIONS

Statistical-mechanical perturbation theory can be applied to determine
the equation of state of real fluids if the intermolecular forces are known.
For real fluids, however, the equation of state can be used with much less
input information than the full potential, because the temperature-depen-
dent parameters of the equation of state that depend only on the repulsion,



1136 Eslami

o and b, are insensitive to the detailed shape of the potential and can be
scaled with two fixed constants, 7 and Vg, or in our procedure by Ty,
and py,,.

This work suggests that the pvT properties of a nonpolar fluid can be
determined with reasonable accuracy from just the two scaling constants,
T, and py,, which are readily available. The present work also shows that
the volumetric behavior of molecular fluids can be obtained from relatively
simple models, provided that suitable scaling factors are used. Without
knowing any details of the intermolecular forces, we can predict the tem-
perature-dependent parameters of the equation of state. Thus simple
models suffice to determine thermodynamic properties.

Finally, our correlation scheme does not need the critical constants
[8, 9], which are not available for many substances, or other parameters
or properties such as acentric factor [9], the heat of vaporization [12],
and the surface tension [ 13]. The previous correlations based on the criti-
cal constants, Fig. 2, and the heat of vaporization [ 12] both show higher
scatter than the present one. The present correlation is less accurate than
the correlation by Pitzer and Curl [9], but it does not require the critical
parameters. Comparison of our predicted results for the density of substances
examined with results using the previous correlations [12, 13, 9], shows
that the accuracy of the present equation of state is nearly the same as the
previous ones [ 12, 13, 21]. Meanwhile, the present equation of state is
simpler than the previous ones [ 12, 13, 21 ] in that it requires only the boiling
point parameters and the parameter A is self-adjusted. Presumably, the
scaling constants, T, and py,, vary in such a manner to compensate for
the shape effects hidden in A.
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